2020-1-4 Pedro J.J. Alvarez:Nanotechnology-Enabled Water Treatment: A Vision to Enable Decentralized Water Treatment and Address Growing Challenges of the Water Energy Nexus


讲座题目:Nanotechnology-Enabled Water Treatment: A Vision to Enable Decentralized Water Treatment and Address Growing Challenges of the Water Energy Nexus
主讲人:Pedro J.J. Alvarez教授
主持人:陈小勇 教授
讲座时间:2020年1月4日上午10:00
讲座地点:闵行校区 资环楼 148室
主办单位:生态与环境科学学院、科技处

报告人简介:
Pedro J. J. Alvarez,美国工程院院士、国际水协(IWA)会士、世界著名环境科学家、高引作者;目前为莱斯大学George R. Brown讲席教授,纳米水处理技术美国国家工程中心主任,上海交通大学环境科学与工程学院顾问教授。曾获得2012年欧文克拉克奖(水研究领域的最高奖)、2014年美国环境工程师和科学家学会最高奖、2007年地下水保护、修复或可持续利用的麦克奖章等。目前任美国基金委工学理事会咨询委员、美国国家科学委员会的Cleaner委员会委员、环境领域顶级杂志Environmental Science & Technology的副主编等多个学术兼职。主要研究领域包括纳米技术的环境应用和环境影响、生物修复技术、生物燃料的水足迹、水处理与回用、抗生素抗性控制等。Alvarez教授在Science等刊物发表SCI论文280余篇,被引用30000余次,个人H因子83,多项环境修复技术得到推广应用。

 

主要学术成就:

1、纳米技术的环境影响与环境应用方面的开创性工作:(1)全面阐述了纳米材料影响微生物系统功能的作用机制、及其在食物链中的生物累积和迁移效应;(2)首次确证纳米银抗菌性能来自于溶解态银离子,解决困扰多年的争议;(3)揭示高剂量纳米银提升生物膜功能的机理;(4)发现C60纳米粒子对鱼类的致畸效应,并提出添加抗氧化剂的控制策略;(5)发现天然有机物降低纳米粒子生物可用性和毒性的普遍规律。由于在该领域的突出贡献,荣获2012年欧文克拉克奖。
2、土壤和地下水生物修复技术方面的开创性工作:(1)首次开发可定量测定1,4-二氧六环好氧降解菌基因的代谢标记物;(2)提出脱卤微生物的生物强化处理技术并被推广应用;(3)构建用于评价混合污染物自然生物降解的数学模型并被推广应用;(4)首次发现污水处理厂的超级细菌和抗性基因,识别其放大与减弱的关键环境要素。
由于在生物修复和环境纳米技术方面的教育和科研实践的贡献,入选为美国工程院院士。

报告内容简介:
Through control over material size, morphology and chemical structure, nanotechnology offers novel materials that are nearly “all surface” and that can be more reactive per atom than bulk materials. Such engineered nanomaterials (ENMs) can offer superior catalytic, adsorptive, optical, quantum, electrical and/or antimicrobial properties that enable multi-functional technology platforms for next-generation water treatment. This presentation will address emerging opportunities for nanotechnology to improve the selectivity and efficiency to remove priority pollutants, decrease electrical energy requirements, and meet a growing need for safer and more affordable decentralized water treatment and reuse. Because water is by far the largest waste stream of the energy industry, we will also discuss technological innovation to enable produced water reuse in remote (off-grid) oil and gas fields, to minimize freshwater withdrawal and disposal challenges. Examples of applicable nano-enabled technologies include fouling-resistant membranes with embedded ENMs that allow for self-cleaning and repair; capacitive deionization with highly conductive and selective electrodes to remove multivalent ions that precipitate or cause scaling; rapid magnetic separation using superparamagnetic nanoparticles; solar-thermal processes enabled by nanophotonics to desalinate with membrane distillation; disinfection and advanced oxidation using nanocatalysts; and nanostructured surfaces that discourage microbial adhesion and protect infrastructure against biofouling and corrosion. We envision using these enabling technologies to develop compact modular water treatment systems that are easy to deploy and can treat challenging waters to protect human lives and support economic development.